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Lecture 1

Lecture 1
Important Matrix Decompositions

Many computations in linear algebra rely on writing a matrix A in special forms:
• Column–Row factorization: A = C R, where columns of C are independent.
• LU factorization: A = L U , with L lower–triangular, U upper–triangular.
• QR factorization: A = Q R, where Q has orthonormal columns.
• Spectral decomposition: S = QΛQT , QT = Q−1, for a symmetric S.
• Eigen–decomposition: A = XΛX−1, satisfying Ax = λx.
• SVD: A = UΣV T , singular values σi =

√
λi(AT A).

Column Space

The column space of A, denoted C(A), is

C(A) = {Ax : x ∈n} = {columns of A}.

In 3, three columns may lie in a plane or a line. If only two columns are independent, C(A) is a plane.

Example: A�=�C�R with Rank�2

Let

A =

1 1 1
3 2 5
2 1 3

 , C =

1 1
3 2
2 1

 , R =
(

1 1 1
0 1 2

)
.

Then A = C R. Here (A) = 2, since C ∈3×2 has two independent columns, and the third column of A is
3(A) =1 (C) + 2 2(C).

Key Facts on Rank and Bases

From A = C R with r = (A):
1. The r columns of C are independent and form a basis of C(A).
2. Every column of A is a combination of those r columns.
3. The r rows of R are independent and form a basis of the row space of A.
4. Every row of A is a combination of those r rows.

Hence column rank = row rank = r.

Rank via Column–Row Factorization

A=CR implies column rank=row rank=r:
1. C’s r columns are independent.
2. A’s columns are combinations of C’s.
3. R’s r rows are independent (contains an Ir block).
4. A’s rows are combinations of R’s.

Thus dim C(A) = dim Row(A) = r and dim N(A) = n − r (e.g. {(1, 1, −1)} when n = 3, r = 2).

Rank‑1 Case and CR Trade‑offs

If (A) = 1 then A = v wT so all columns (and rows) are multiples of one vector. Benefits: C uses original
columns, R is RREF, rank equality transparent. Drawbacks: C,R may be ill‑conditioned; if A invertible
then C = A, R = I (no simplification).
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Orthogonal Subspaces (Big Picture)

For A ∈m×n, the four fundamental subspaces satisfy

N(A) ⊥ Row(A), N(AT ) ⊥ C(A),

with dim C(A) = dim Row(A) = r, dim N(A) = n − r, dim N(AT ) = m − r.

Outer Products and Factorizations

Any A =
∑n

i=1 bi cT
i splits into rank‑1 matrices. Key factorizations: CR, LU, QR, Spectral, Eigen, SVD.

LU via Gaussian Elimination

Gaussian elimination yields A = L U with L unit lower‑triangular, U upper‑triangular. Example:(
2 3
4 7

)
=

(
1 0
2 1

) (
2 3
0 1

)
.

With row exchanges one obtains P A = L U .

LU Decomposition via Elimination

To solve Ax = b we factor A = L U by Gaussian elimination, where L is unit lower‑triangular and U is
upper‑triangular. Concretely:

1. For i = 2, . . . , n, subtract `i1 = ai1
a11

times row 1 from row i.
2. Repeat on the remaining (n − 1) × (n − 1) submatrix to introduce zeros below each pivot.

The multipliers `ij fill L, and the final upper form is U , so A = L U .

Orthogonal Matrices and Length Preservation

A matrix Q ∈m×n has orthonormal columns q1, . . . , qn iff

QT Q = In.

If Q is square then also QQT = I, so Q−1 = QT . Key properties:
• 〈Qx, Qy〉 = xT QT Q y = xT y: inner products preserved.
• ‖Qx‖2 = ‖x‖2: lengths unchanged.

• Eigenvalues satisfy |λ| = 1. E.g. a planar rotation
(

cos θ − sin θ
sin θ cos θ

)
.

QR Factorization via Gram–Schmidt

Given A = [a1, . . . , an] with independent columns, we construct A = Q R where Q = [q1, . . . , qn] has
orthonormal columns and R is upper‑triangular:

For k = 1, . . . , n : vk = ak −
k−1∑
j=1

(qT
j ak) qj ,

rkk = ‖vk‖2, qk = vk/rkk, rjk = qT
j ak (j < k).

Then QT A = R and QT Q = I.

Least Squares via QR

For an overdetermined system m > n, the best fit x̂ minimizes ‖b − Ax‖2. One solves

AT A x = AT b =⇒ R x = QT b

if A = Q R. The projection p = Ax̂ = Q QT b lies in the column space C(A), and the residual b − p is
orthogonal to C(A).
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Least Squares via QR

Given A ∈m×n with m > n, the least squares solution x̂ minimizes ‖b − Ax‖2. The normal equations

AT (b − Ax̂) = 0 =⇒ AT A x̂ = AT b.

If A = Q R with QT Q = I, then
R x̂ = QT b.

The projection p = Ax̂ lies in C(A) and the residual e = b − p is orthogonal to C(A).

Symmetric Matrices: Orthogonal Eigenvectors

Let S ∈n×n satisfy S = ST . Then all eigenvalues λ are real, and eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Proof of Orthogonality. Suppose Sx = λx and Sy = αy with λ 6= α. Then

xT Sy = λ xT y, xT Sy = (Sx)T y = α xT y =⇒ (λ − α)xT y = 0.

Hence xT y = 0.

Spectral Decomposition and Connection to SVD

Orthonormal eigenvectors qi form Q = [q1, . . . , qn] with QT Q = I and

SQ = QΛ, S = Q Λ QT , S =
n∑

i=1
λi qiq

T
i .

For S = AT A, set σi =
√

λi to obtain the SVD A = U Σ V T =
∑r

i=1 σi uiv
T
i .

Eigen-decomposition of General Matrices

If A ∈n×n has n independent eigenvectors, write AX = XΛ. Then

A = X Λ X−1, Ak = X Λk X−1,

so the same eigenvectors diagonalize all powers. Moreover Ak → 0 as k → ∞ if maxi |λi| < 1.

Positive Semidefiniteness of AT A

The matrix AT A ∈n×n is
1. Square and symmetric: (AT A)T = AT A.
2. Nonnegative definite: for any x,

xT (AT A)x = ‖Ax‖2
2 ≥ 0.

By the eigenvalue test, all eigenvalues of AT A satisfy λ ≥ 0.

Positive Semidefiniteness of AT A

The matrix AT A ∈n×n is:
1. Square: product of (n × m)(m × n).
2. Symmetric: (AT A)T = AT A.
3. Nonneg. definite: for any x ∈n, xT (AT A)x = ‖Ax‖2

2 ≥ 0.
Hence all eigenvalues satisfy λ ≥ 0.

Symmetry and Semidefiniteness of AAT
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AAT ∈m×m is symmetric positive semidefinite and shares each nonzero eigenvalue of AT A because

AAT (A v) = A(AT A) v = λ A v

whenever AT A v = λv.

Singular Value Decomposition (SVD)

Any A ∈m×n of rank r factors as A = U Σ V T , where U and V are orthogonal and

Σ = (σ1, . . . , σr, 0, . . . , 0), the singular values satisfy σ1 ≥ · · · ≥ σr > 0.

Columns vi of V solve AT A vi = σ2
i vi; setting ui = A vi/σi gives AAT ui = σ2

i ui. Extending {vi} to a basis
of ker(A) and {ui} to ker(AT ) completes V and U , so that

A =
r∑

i=1
σi ui vT

i .

Low-rank Approximation via SVD

Starting from the SVD of rank r,

A =
r∑

i=1
σi uiv

T
i , σ1 ≥ · · · ≥ σr > 0,

the best rank-k approximation (in any unitarily invariant norm) is

Ak =
k∑

i=1
σi uiv

T
i , ‖A − Ak‖ ≤ ‖A − Bk‖ ∀ (Bk) ≤ k.

Key induced norms of A are

‖A‖2 = σ1, ‖A‖F =
( r∑

i=1
σ2

i

)1/2
, ‖A‖∗ =

r∑
i=1

σi.

Randomized Numerical Linear Algebra

Randomization enables fast approximations for huge matrices.

Column–Row Sampling. One samples columns of A and rows of B via a sparse matrix S (and its transpose
T = ST ). For example, with

A = [a1, a2, a3], BT = [bT
1 , bT

2 , bT
3 ], S =

(
s11 0 0
0 0 s32

)
,

we get

AS = [ s11a1, s32a3 ], STB =
(

s11bT
1

s32bT
3

)
.

Although SST 6= I, one can choose sampling probabilities (e.g. pi ∝ ‖ai‖‖bi:‖) so that

E[SST ] = I, E[ASTB] = AB,

minimizing the variance of the estimator.

Additional Resources

• MIT OpenCourseWare: https://ocw.mit.edu – courses 18.06 Introduction to Linear Algebra, 18.065
Linear Algebra and Learning from Data.

• Gilbert Strang, “A 2020 Vision of Linear Algebra” (OCW resource).
• New text: Linear Algebra for Everyone (expected 2021).
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