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Lecture 1

Important Matrix Decompositions

Many computations in linear algebra rely on writing a matrix A in special forms:

¢ Column—Row factorization: A = C R, where columns of C' are independent.
e LU factorization: A = LU, with L lower—triangular, U upper—triangular.

e QR factorization: A = @ R, where () has orthonormal columns.

e Spectral decomposition: S = QAQ”T, QT = Q1 for a symmetric S.

o Eigen-decomposition: A = XAX ™! satisfying Az = \z.

e SVD: A=UXVT, singular values o; = \/\;(AT A).

Column Space
The column space of A, denoted C'(A), is
C(A) ={Az : z €"} = {columns of A}.

In 3, three columns may lie in a plane or a line. If only two columns are independent, C'(A) is a plane.

Example: A = C R with Rank 2
Let
1 1 1 1 1
A=1(3 2 5|, C=(3 2], Rz((l) 1 ;)
2 1 3 2 1

Then A = C R. Here (A) = 2, since C' €*2 has two independent columns, and the third column of A is
3(A4) =1 (C) +22(0).

Key Facts on Rank and Bases

From A = C R with r = (A):

1. The r columns of C' are independent and form a basis of C'(A4).

2. Every column of A is a combination of those r columns.

3. The r rows of R are independent and form a basis of the row space of A.
4. Every row of A is a combination of those r rows.

Hence column rank = row rank = r.

Rank via Column—Row Factorization

A=CR implies column rank=row rank=r:

1. C’s r columns are independent.

2. A’s columns are combinations of C’s.

3. R’s r rows are independent (contains an I,. block).
4. A’s rows are combinations of R’s.

Thus dim C(A) = dim Row(A) =r and dim N(A) =n —r (e.g. {(1,1,—1)} when n = 3,r = 2).

Rank-1 Case and CR Trade-offs

If (A) =1 then A =vw” so all columns (and rows) are multiples of one vector. Benefits: C uses original
columns, R is RREF, rank equality transparent. Drawbacks: C,R may be ill-conditioned; if A invertible
then C'= A, R = I (no simplification).



Orthogonal Subspaces (Big Picture)
For A €m™*" the four fundamental subspaces satisfy
N(A) L Row(4), N(AT) L C(A),

with dim C(A4) = dimRow(A) =7, dim N(A) =n —r, dim N(AT) =m —r.

Outer Products and Factorizations

Any A=3""1b; eI’ splits into rank-1 matrices. Key factorizations: CR, LU, QR, Spectral, Eigen, SVD.

LU via Gaussian Elimination

Gaussian elimination yields A = LU with L unit lower-triangular, U upper-triangular. Example:

2 3\ _ (1 0\ (2 3
4 7)\2 1)\0 1)
With row exchanges one obtains PA = LU.

LU Decomposition via Elimination

To solve Ax = b we factor A = LU by Gaussian elimination, where L is unit lower-triangular and U is
upper-triangular. Concretely:

1. Fori=2,...,n, subtract {;; = % times row 1 from row i.
2. Repeat on the remaining (n — 1) X (n — 1) submatrix to introduce zeros below each pivot.

The multipliers ¢;; fill L, and the final upper form is U, so A = LU.

Orthogonal Matrices and Length Preservation

A matrix @ €™*" has orthonormal columns q, ..., g, iff
QTQ = In

If Q is square then also QQT =1, so Q' = Q7. Key properties:

e (Qx, Qy) = 27QTQy = xTy: inner products preserved.
o ||Qx|l2 = ||z||2: lengths unchanged.

sinf cosf

o Eigenvalues satisfy |A\| = 1. E.g. a planar rotation (cos@ e 0).

QR Factorization via Gram—Schmidt

Given A = [aq,...,a,] with independent columns, we construct A = @ R where Q@ = [g1,...,¢s] has
orthonormal columns and R is upper-triangular:

k—1

Fork=1,...,n: v =ay —Z(quak)qj7
j=1

ek = vkll2, @k = vn/TRK, TR = quak (j < k).

Then Q"A =R and Q7Q = 1.

Least Squares via QR
For an overdetermined system m > n, the best fit & minimizes ||b — Az||2. One solves
ATAz=A"h = Rz=0Q"

if A = QR. The projection p = A% = QQTb lies in the column space C(A), and the residual b — p is
orthogonal to C(A).



Least Squares via QR
Given A €™*™ with m > n, the least squares solution Z minimizes ||b — Az||2. The normal equations
AT(b—A2)=0 = ATAz=AT0.

If A= QR with QTQ = I, then
Ri& = QTb.

The projection p = AZ lies in C'(A) and the residual e = b — p is orthogonal to C'(4).
Symmetric Matrices: Orthogonal Eigenvectors

Let S €™*" satisfy S = ST. Then all eigenvalues \ are real, and eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Proof of Orthogonality.  Suppose Sx = Ax and Sy = ay with X\ # «. Then
2T Sy = AaTy, TSy = (Sz)Ty=azly = M—a)ly=0.

Hence 27y = 0.

Spectral Decomposition and Connection to SVD

Orthonormal eigenvectors ¢; form @ = [q1, ..., ¢,] with QT Q = I and
SQ=QA, S=QAQT, S=3 A’
i=1
For S = AT A, set 0; = v/A; to obtain the SVD A=UXV? =" o;uv].

Eigen-decomposition of General Matrices
If A €™*" has n independent eigenvectors, write AX = XA. Then
A=XAX"1', AF=XxArX1,

so the same eigenvectors diagonalize all powers. Moreover A¥ — 0 as k — oo if max; |\;| < 1.

Positive Semidefiniteness of AT A

The matrix AT A en* ig

1. Square and symmetric: (AT A)T = AT A.
2. Nonnegative definite: for any =z,
2T (AT A)z = ||Az||3 > 0.

By the eigenvalue test, all eigenvalues of AT A satisfy A > 0.

Positive Semidefiniteness of AT A

The matrix AT A em*” ig:

1. Square: product of (n x m)(m x n).
2. Symmetric: (ATA)T = AT A.
3. Nonneg. definite: for any x €", 27 (AT A)z = || Az||3 > 0.

Hence all eigenvalues satisfy A > 0.

Symmetry and Semidefiniteness of AAT



AAT em>Xm is symmetric positive semidefinite and shares each nonzero eigenvalue of AT A because
AAT(Av) = A(ATA)v = NAw
whenever ATAv = \v.

Singular Value Decomposition (SVD)
Any A €™*" of rank r factors as A = U X V7, where U and V are orthogonal and
¥ =(o1,...,0,,0,...,0), the singular values satisfy o1 > --- > o, > 0.

Columns v; of V solve AT Av; = o?v;; setting u; = Av;/o; gives AAT u; = o?u;. Extending {v;} to a basis
of ker(A) and {u;} to ker(AT) completes V and U, so that

r

— E T

A= O;U; U;
i=1

Low-rank Approximation via SVD

Starting from the SVD of rank r,

T
A = Zaiuw?, 01> >0,>0,
i=1

the best rank-k approximation (in any unitarily invariant norm) is

k
Ay = oiuw), A=Al < A= Bi||V(Bi) < k.

7
i=1

Key induced norms of A are

T

/ T
4l =l = (So2) 7l =Son
=1

i=1
Randomized Numerical Linear Algebra

Randomization enables fast approximations for huge matrices.

Column—Row Sampling.  One samples columns of A and rows of B via a sparse matrix S (and its transpose

T = ST). For example, with

A=lai,az,a3), BT =TT 0T], S= s;i1 0 0 7
0 0 s3

we get
Sub,{

AS = [8110,1, 532a3}, STB = T .
832b3

Although SST # I, one can choose sampling probabilities (e.g. p; o< ||a;||||b:.]|) so that

E[SST] =1, E[ASTB]= AB,

minimizing the variance of the estimator.

Additional Resources

e MIT OpenCourseWare: https://ocw.mit.edu — courses 18.06 Introduction to Linear Algebra, 18.065

Linear Algebra and Learning from Data.
o Gilbert Strang, “A 2020 Vision of Linear Algebra” (OCW resource).

o New text: Linear Algebra for Everyone (expected 2021).


https://ocw.mit.edu
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